PERIODICAL EXPANSIVENESS FOR C^1 -GENERIC DIFFEOMORPHISMS

JIWEON AHN*, SEUNGHEE LEE**, AND JUNMI PARK ***

ABSTRACT. C^1 -generically, if a transitive diffeomorphism f is periodically expansive, then it is hyperbolic.

1. Introduction

Let M be a $n(\geq 2)$ -dimensional closed C^{∞} Riemannian manifold without boundary, and $\mathrm{Diff}(M)$ be a space of diffeomorphisms of M. Let $f \in \mathrm{Diff}(M)$, and Λ be a closed f-invariant set in M. We say that Λ admits a dominated splitting if the tangent bundle $T_{\Lambda}M$ has a continuous Df-invariant splitting $E \oplus F$ and there exist constants C > 0 and $0 < \lambda < 1$ such that

$$||D_x f^n|_{E(x)}|| \cdot ||D_x f^{-n}|_{F(f^n(x))}|| \le C\lambda^n$$

for all $x \in \Lambda$ and $n \geq 0$. We say that Λ is hyperbolic for f if the tangent bundle $T_{\Lambda}M$ has a Df-invariant splitting $E^s \oplus E^u$ and there exist constants C > 0 and $0 < \lambda < 1$ such that

$$||D_x f^n|_{E_x^s}|| \le C\lambda^n$$
 and $||D_x f^{-n}|_{E_x^u}|| \le C\lambda^n$

for all $x \in \Lambda$ and $n \geq 0$. If $\Lambda = M$ then f is called Anosov. It is well-known that if Λ is hyperbolic, then it admits a dominated splitting.

We denote $Orb_f(x)$ by the orbit of x under f, P(f) by the set of periodic points for f, and $P_h(f)$ by the set of hyperbolic periodic points for f.

For $\delta > 0$, a sequence of points $\{x_i\}_{i=a}^b(-\infty \leq a < b \leq \infty)$ in M is called a δ -pseudo orbit of f if $d(f(x_i), x_{i+1}) < \delta$ for all $a \leq i \leq b-1$. Given $f \in \text{Diff}(M)$, a closed f-invariant set $\Lambda \subset M$ is said to be chain transitive if for any points $x, y \in \Lambda$ and $\delta > 0$, there is a δ -pseudo orbit

Received March 26, 2015; Accepted July 22, 2015.

2010 Mathematics Subject Classification: Primary 37D20, 37C20.

Key words and phrases: periodically expansive, generic, hyperbolic.

Correspondence should be addressed to Jiweon Ahn, jwahn@cnu.ac.kr.

 $\{x_i\}_{i=a_\delta}^{b_\delta} \subset \Lambda$ of f such that $x_{a_\delta} = x$ and $x_{b_\delta} = y$. For given $x, y \in M$, we write $x \leadsto y$ if for any $\delta > 0$, there is a δ -pseudo orbit $\{x_i\}_{i=a}^b \subset \Lambda(a < b)$ of f such that $x_a = x$ and $x_b = y$. Write $x \leadsto y$ if $x \leadsto y$ and $y \leadsto x$. The set of points $\{x \in M : x \leadsto x\}$ is called the *chain recurrent set* of f and is denoted by $\mathcal{R}(f)$. The relation \longleftrightarrow on $\mathcal{R}(f)$ induces an equivalence relation, whose classes are called *chain components* of f. Every chain component of f is a closed f-invariant set and is denoted by $C_f(p)$ for some hyperbolic periodic point p.

It is well known that if p is a hyperbolic periodic point of f with period k then the sets

$$W^s(p) = \{x \in M : f^{kn}(x) \to p \text{ as } n \to \infty\}, \text{ and}$$

 $W^u(p) = \{x \in M : f^{-kn}(x) \to p \text{ as } n \to \infty\}$

are C^1 -injectively immersed submanifolds of M. We denote the index of $p = \dim W^s(p)$.

Every point in the transversal intersection $W^s(p) \cap W^u(p)$ of $W^s(p)$ and $W^u(p)$ is called the homoclinic point of f associated to p. The closure of the homoclinic points of f associated to p is called the homoclinic class of f and it is denoted by $H_f(p)$. If $p \in P(f)$ is either a source or a sink, then $H_f(p) = Orb_f(p)$.

Note that the homoclinic class $H_f(p)$ is a subset of the chain component $C_f(p)$ of f containing p.

A compact invariant set $\Lambda \subset M$ is called *transitive* for f if there is $x \in \Lambda$ such that $\omega(x) = \Lambda$, where $\omega(x) = \{y \in M : f^{n_i}(x) \to y \text{ as } n_i \to +\infty\}$ which is called the ω -limit set of x. Moreover, we say that f is a transitive diffeomorphism if M is transitive for f.

We say that $p, q \in P_h(f)$ are homoclinically related if $W^s(p)$ has a transversal intersection with $W^u(p)$ and $W^u(p)$ has a transversal intersection with $W^s(q)$. Then we denote this by $p \sim q$.

In the middle of the twenty century, the notion of expansiveness was introduced by Utz [8]. A diffeomorphism f is called *expansive* if there is $\delta > 0$ such that for any distinct $x, y \in M$ there exists $n \in \mathbb{Z}$ such that $d(f^n(x), f^n(y)) > \delta$. In dynamical systems, it has been studied of many types of expansiveness such as entropy expansive, G-expansive, continuum-wise expansive, pointwise expansive, measure expansive, n-expansive, measure sensitive and so on. In this paper, we introduce the periodically expansiveness by Fakhari [4] as follows.

DEFINITION 1.1. Let $p \in P_h(f)$. The homoclinic class $H_f(p)$ of a diffeomorphism f is periodically expansive if there is $\delta > 0$ such that for

any q homoclinically related to p and any $x \in H_f(p)$, if $d(f^n(q), f^n(x)) < \delta$ for all $n \in \mathbb{Z}$, then q = x. And the constant δ is called the *expansive* constant.

If f is an expansive homeomorphism on $H_f(p)$, then f is clearly periodically expansive on $H_f(p)$ and hence any hyperbolic homoclinic class is periodically expansive.

We say that a subset $\mathcal{R} \subset \mathrm{Diff}(M)$ is a residual subset if it contains a countable intersection of open dense sets. The finite intersection of residual subsets is a residual subset. Since $\mathrm{Diff}(M)$ is a Baire space when it is equipped with the C^1 -topology, any residual subset of $\mathrm{Diff}(M)$ is dense. We will say that a property holds generically if there exists a residual subset \mathcal{R} such that any $f \in \mathcal{R}$ has that property. Sometimes, we will say that a diffeomorphism f is generic when we refer that f could be taken in a residual subset. We say that Λ is locally maximal if there is a neighborhood U of Λ such that $\bigcap_{n \in \mathbb{Z}} f^n(U) = \Lambda$.

Now, we introduce the main theorem of this paper.

THEOREM 1.2. For C^1 -generic f, if a transitive diffeomorphism f is periodically expansive, then it is Anosov.

2. Proof of main theorem 1.2

To prove Theorem 1.2, we need some lemmas.

LEMMA 2.1. For a transitive diffeomorphism f, M is equal to the chain component $C_f(p)$ of f for all $p \in P_h(f)$.

Proof. Let $C_f(p)$ be the chain component of a hyperbolic periodic point p for f. Clearly $C_f(p) \subset M$, it is enough to show that $M \subset C_f(p)$. Let $y \in M$. Since M is transitive, for any $\delta > 0$, there is $x \in M$ and $n_1 > 0, n_2 > 0$ such that $d(f(y), f^{-n_1}(x)) < \delta$ and $d(f^{n_2}(x), p) < \delta$. Then we can construct a δ -pseudo orbit ξ_1 from y to p as follows:

$$\xi_1 = \{y, f^{-n_1}(x), f^{-(n_1-1)}(x), \cdots, f^{-1}(x), x, f(x), \cdots, f^{n_2-1}(x), p\}.$$

Similarly, we can construct a δ -pseudo orbit ξ_2 from p to y. So that $y \in C_f(p)$.

LEMMA 2.2. [3] There is a residual set $\mathcal{G}_1 \subset \text{Diff}(M)$ such that for $f \in \mathcal{G}_1$, every chain component $C_f(p)$ of f is equal to the homoclinic class $H_f(p)$ of f, where p is a hyperbolic periodic point of f.

From above two lemmas, we know that $M = C_f(p) = H_f(p)$ for a C^1 -generic transitive diffeomorphism f and $p \in P_h(f)$.

LEMMA 2.3. There is a residual set $\mathcal{G}_2 \subset \text{Diff}(M)$ such that for a periodically expansive transitive diffeomorphism $f \in \mathcal{G}_2$, every point q in $H_f(p) \cap P(f)$ is hyperbolic.

Proof. There is a residual set \mathcal{G}_2 of $\mathrm{Diff}(M)$ such that for every transitive diffeomorsphism $f \in \mathrm{Diff}(M)$, every periodic point of f is hyperbolic and all their invariant manifolds are intersect transversely (Kupka-Smale). Since $H_f(p) = M$, $H_f(p) \cap P(f) = M \cap P(f) = P(f)$. Then by the Kupka-Smale property, every $q \in P(f)$ is hyperbolic.

REMARK 2.4. Let f be a diffeomorphism on M and p be a hyperbolic periodic point of f. We know that $H_f(p)$ is equal to the set $\{q \in P_h(f) : q \sim p\}$. So it is also well-known that $H_f(p) = \overline{P(f) \cap H_f(p)}$.

Now, we recall some definitions and notions. The support of a measure μ is denoted by $\mathrm{supp}(\mu)$. Let

 $\mathcal{M}_f(M) = \{ \mu : \mu \text{ is an } f\text{-invariant Borel probability measures on } M$ such that $\operatorname{Supp}(\mu) \subset \Lambda \},$

endowed with the weak topology.

Let $Orb_f(p)$ be a periodic orbit of f and let $p \in Orb_f(p)$ be a periodic point of f of with a period $\pi(p)$. Then its associated *ergodic measure* μ_p is defined by

$$\mu_p = \frac{1}{\pi(p)} \sum_{i=0}^{\pi(p)-1} \delta_f^i(p).$$

LEMMA 2.5 (Mañé's Ergodic General Density Theorem, [5]). For any C^1 -generic diffeomorphism f, the convex hull of periodic measures is dense in $\mathcal{M}_f(M)$.

LEMMA 2.6. [6] Let Λ be a compact invariant set of $f \in \text{Diff}(M)$ and E be a continuous invariant subbundle. If there is m > 0 such that

$$\int \log \|(Df^m)|_E \|d\mu < 0$$

for any f-invariant ergodic measure μ , then E is contraction.

REMARK 2.7. There is a residual set $\mathcal{G}_3 \subset \text{Diff}(M)$ such that for any $f \in \mathcal{G}_3$ and any hyperbolic periodic point p of f, for any ergodic measure μ of f, there is a sequence of periodic points p_n such that $\mu_{p_n} \to \mu$ in the weak topology and $Orb_f(p_n) \to \text{Supp}(\mu)$ in Housdorff metric.

To end the proof of Theorem 1.2, it is enough to show the following lemma.

LEMMA 2.8. There is a residual set $\mathcal{G}_4 \subset \text{Diff}(M)$ such that for any transitive diffeomorphism $f \in \mathcal{G}_4$, if f is a periodically expansive diffeomorphism, then f is transitive Anosov.

Proof. Let $\mathcal{G}_4 = \mathcal{G}_1 \cap \mathcal{G}_2 \cap \mathcal{G}_3$. Then we see that for a C^1 -generic transitive diffeomorphism $f \in \mathcal{G}_4$, M becomes the homoclinic class $H_f(p)$ for some $p \in P_h(f)$.

First of all, we show that any periodic point belongs to a periodically expansive homoclinic class $H_f(p)$ of $f \in \mathcal{G}_4$ has the constant index as the index of p. Note that for any periodic point $q \in H_f(p)$ with index $(q) = \operatorname{index}(p)$, we have $q \sim p$. Since $H_f(p)$ is periodically expansive, index $(q) = \operatorname{index}(p)$ for all $q \in H_f(p)$.

From Lemma 2.3, for any periodically expansive diffeomorphisms f, M has a dominated splitting $E \oplus F$.

Let μ be an ergodic measure supported on $H_f(p)$. Let p_n be the sequence of periodic points given by Remark 2.7. Then, we have

$$\int \|Df|_E \|d\mu = \lim_{n \to \infty} \int \|Df|_E \|d\mu_{p_n} < 0.$$

Thus E is contraction. Similarly, the bundle F is expansion, and we complete the proof.

References

- [1] F. Abdenur, C. Bonatti, and S. Crovisier, *Nonuniform hyperbolicity for C*¹-generic diffeomorphisms, Israel J. Math. **183** (2011), 1-60.
- [2] A. Arbieto, Periodic orbits and expansiveness, Math. Z. 269 (2011), 801-807.
- [3] C. Bonatti and S. Crovisier, Recurrence and genericity, Invent. Math. 158 (2004), 33-104.
- [4] A. Fakhari, periodically expansive homoclinic classes, J. Dynam. Diff. Equ. 24 (2012), 561-568.
- [5] K. Lee and X. Wen, Shadowable chain transitive sets of C¹-generic diffeomorphisms, Bull. Korean Math. Soc. **49** (2012), 21-28.
- [6] R. Mañé, A proof of the C¹ stability conjecture, Inst. Hautes Etudes Sci. Publ. Math. 66 (1987), 161-210.
- [7] R. Mañé, Ergodic theory and differentiable dynamics, Springer-Verlag, (1987).
- [8] W. R. Utz, Unstable homeomorphisms, Proc. Amer. Math. Soc. 1 (1950), 769-774.
- [9] D. Yang and S. Gan, Expansive homoclinic classes, Nonlinearity 22 (2009), 729-733.

*

Department of Mathematics Chungnam National University Daejeon 305-764, Republic of Korea *E-mail*: jwahn@cnu.ac.kr

**

Department of Mathematics Chungnam National University Daejeon 305-764, Republic of Korea *E-mail*: shlee@cnu.ac.kr

Department of Mathematics Chungnam National University Daejeon 305-764, Republic of Korea *E-mail*: pjmds@cnu.ac.kr